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Abstract. In this paper we collect most of the known and add some new algebraic
and analytic properties of Ramanujan cubic polynomials (RCP) and Ramanujan cu-
bic polynomials of the second kind (RCP2). One of our goals was to systematize the
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1. Introduction

In this paper we collect (most of) the known and add some new algebraic and ana-
lytic properties of two interesting families of cubic polynomials – namely Ramanujan
cubic polynomials (RCP) (see Definition 1.1 below) and the associated family of so-
called Ramanujan cubic polynomials of the second kind (RCP2) (see Definition 1.3
below). Shevelev in [8] have started the regular studies of RCPs, their roots and iden-
tities they imply. Since then these polynomials are studied in many directions and
from different points of view. The family of RCP2s was introduced by Witu la in [11]
as the supplement (and the opposite in the same time) of RCPs, but it turned out
that these polynomials are interesting on their own.
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One of our goals was to systematize the current knowledge on RCPs fulfilling
the list of properties with some new ones, like the new representation of RCPs (see
Theorem 1.2 and Theorem 4.1 point 1.) connected with so-called Shevelev’s parameter
(see formula (9)). On a base of it we have obtained the best possible characterization of
RCPs with the same Shevelev’s parameter (see Theorem 1.2 point 2.), which improves
the result given in [10]. Moreover, it helped us to understand the base and nature of
some identities discovered by Shevelev (see Theorem 4.1 point 3.).

Our next goal was to examine differences, similarities and connections between
RCPs and RCP2s, which allow to extend the knowledge on properties of both families
of polynomials. In particular, we gave an algorithm kept in a spirit of Ramanujan,
namely how to obtain RCP2 with roots being cubic roots of roots of some RCP (see
Theorem 3.1).

The last goal was to discuss some asymptotic properties of RCP2.

1.1. RCPs, their representations and forms of roots

In Journal of the Indian Mathematical Society Srinivasa Ramanujan asked the
questions about the proof the following identities
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More on above two and the other 56 Ramanujan’s questions can be found e.g. in [5].
Studying the nature of the above equalities let Ramanujan prove a more general result
(the proof appeared in the second of his famous Notebooks)

Theorem A (Ramanujan, [6]). Let α, β, γ denote the roots of the cubic equation

x3 − ax2 + bx− 1 = 0. (1)

Then, for a suitable determination of roots

α
1

3 + β
1

3 + γ
1

3 = (a+ 6 + 3t)
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(αβ)
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3 + (βγ)
1

3 + (γα)
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3 = (b+ 6 + 3t)
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3 ,

where
t3 − 3(a+ b+ 3)t− (ab+ 6(a+ b) + 9) = 0.
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For the proof see e.g. [3]. Regular studies on a generalization of Ramanujan’s result
was started by Shevelev who proved that if apply Ramanujan’s theorem to equation
(1) under assumption a+ b+ 3 = 0 we eventually get the following

Theorem B (Shevelev, 1988, [7], see also [8]). Let p, q, r ∈ R, r 6= 0 be such that

pr
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3 + 3r
2
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and let the polynomial x3 + px2 + qx+ r have real roots x1, x2, x3. Then
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This result gave birth to

Definition 1.1 (Shevelev, 2007, [8]). Let p, q, r ∈ R, r 6= 0. A cubic polynomial

π(x) = x3 + px2 + qx+ r

is called a Ramanujan cubic polynomial (RCP) if and only if it has real roots
and satisfies the condition

pr
1

3 + 3r
2

3 + q = 0. (2)

Note that RCP is a monic polynomial (i.e. the leading coefficient equals 1).

As an example, we give a polynomial considered by Ramanujan, namely

(∗) x3 − 3x2 − 6x+ 8 = (x− 1)(x+ 2)(x− 4).

Note that roots of this RCP form a geometric sequence (see also formula (18),
page 188, and considerations after)

There are known two representations of RCPs and their roots.

Theorem C (Witu la, 2010, [10]). A monic cubic polynomial π(x) is RCP if and only
if there exist r, γ ∈ R, r 6= 0, γ 6= 1, γ 6= 2 such that

π(x) = x3 +
P (γ − 1)

(γ − 1)(2 − γ)
r

1

3 x2+
P (2 − γ)
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r

2

3 x+r, P (γ) := γ3−3γ+1. (3)

Moreover, roots of π(x) are

1

2 − γ
r

1
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1
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2 − γ

1 − γ
r

1

3 . (4)

Observe that polynomial (∗) is obtained for γ = 3, r = 8.

Theorem D (Barbero, Cerruti, Murru, Abrate, 2013, [1]). A monic cubic polynomial
π(x) is RCP if and only if there exist h, g ∈ R, g 6= 0 such that

π(x) = x3 + hgx2 − (h+ 3)g2x+ g3. (5)
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Moreover, roots of π(x) depend on h and for τ(h) := h2 + 3h+ 9 they are of the form
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2
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2
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Observe that polynomial (∗) is obtained for h = − 3
2 , g = 2.

We provide one more representation of RCPs (proven in Section 4), namely

Theorem 1.2. A monic cubic polynomial π(x) is RCP if and only if there exist
r, s ∈ R, r 6= 0, s 6 9
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π(x) = x3 +
−3 ∓

√
9 − 4s

2
r

1

3x2 +
−3 ±

√
9 − 4s

2
r

2

3 x+ r. (7)
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(8)

with signs taken respectively to those in (7).

Observe that polynomial (∗) is obtained for r = 8, s = 9
4 .

1.2. Examination of RCPs

In spite of full characterizations of RCPs there are some results which help to
understand their nature. Below we list some of them.

Notation. From now on, π(x) := x3 +px2+qx+r denotes RCP with roots x1, x2, x3.
Moreover, h, g, γ, P (γ), τ(h) are as in representations of RCPs (see Theorems C and D)
and

s :=
pq

r
(9)

will be called the Shevelev parameter.
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New RCPs on a base of π(x):

P.1. [8] For every a ∈ R, a 6= 0 the polynomial x3 +apx2 +a2qx+a3r is also RCP with
roots ax1, ax2, ax3.

P.2. [8] The polynomial x3 + qx2 + prx+ r2 is also RCP with roots r
x1
, r
x2
, r
x3

.

Properties of roots of RCPs:
P.3. Each RCP has 3 distinct roots (follows from representations, see also Section 2).
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{
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Properties of RCPs connected to the Shevelev parameter:
P.8. [8] s 6 9

4 .
P.9. [8] (see also Theorem 4.1, page 195) If two RCPs with roots y1, y2, y3 and z1, z2, z3

have the same Shevelev parameter then

{

y1
y2
,
y2
y1
,
y1
y3
,
y3
y1
,
y2
y3
,
y3
y2

}

=

{
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z2
,
z2
z1
,
z1
z3
,
z3
z1
,
z2
z3
,
z3
z2

}

.

P.10. [10] s = 9 − (γ−1)(γ−2)+1)3

((γ−1)(γ−2))2 = P (γ−1)P (2−γ)
((γ−1)(2−γ))2 .

P.11. (Theorem 4.1) For each real number a < 9
4 there are exactly two distinct families

of RCPs (depending on r only) with the Shevelev parameter equal to a and only
one family for the limit value 9

4 .

1.3. Identities

Properties of roots of Ramanujan cubic polynomials are a source of nontrivial and
beautiful algebraic identities. Below we list some of them in the chronological order.
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1. Berndt, Chan, Zhang [4]
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Note that the Ramanujan’s identity (Q682) is obtained for a = 2.
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3. Witu la, S lota, [13]
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6. Barbero, Cerruti, Murru, Abrate, [1]

√
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3
arctan

9
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−
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21 sin
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3
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9
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3
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and the last identity in the list, which is of a different nature, but still nice:

1

(π3 − 1)
1

3

− (π3 − 1)
1

3

π
+

(

3(π6 − π3 + 1)

π2(π3 − 1)
2

3

+
π9 − 6π6 + 3π3 + 1

π3(π3 − 1)

)
1

3

= π.

1.4. Families of cubic polynomials associated to RCPs

In a spirit of and in a connection with RCPs some new families of cubic polynomials
were considered.

Definition 1.3 (Witu la, 2010, [11]). A polynomial π(x) = x3+px2+qx+r, p, q, r ∈ R,
r 6= 0 is called1 a Ramanujan cubic polynomial of the second kind (RCP2) if
and only if

q3 + p3r + 27r2 = 0. (15)

Note that each summand in the above condition is a cube of a summand in the
definition of RCP. It is known that each RCP2 has the form

x3 + 3
3
√
krx2 − 3 3

√

(k + 1)r2x+ r, (16)

where k, r ∈ R, r 6= 0 and that RCP2 is RCP if and only if pqr = 0 [11]. Therefore,
although many properties of RCPs and RCP2s are different, they have also many in
common. We discuss some of them in this paper.

Definition 1.4 (Barbero, Cerruti, Murru, Abrate, 2013, [1]). A polynomial π(x) is
called a Shanks cubic polynomial (SCP) if and only if there exists h ∈ R such
that

π(x) = x3 − hx2 − (h+ 3)x− 1. (17)

In view of Theorem D (page 183), every SCP is RCP for g = −1. Examination of
SCPs allowed, among the others, to set up the formulas and properties of roots of
RCPs via the Galois theory.

For properties of the above mentioned classes of cubic polynomials see the papers
cited in definitions.

1 Although the case r = 0 was not formally excluded from the original definition of RCP2, it was
assumed to be.
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1.5. Organization of a paper

The rest of this paper is organized as follows: in Section 2 we discuss properties of
roots of RCPs and RCP2s. In Section 3 we show how to generate RCP2s on a base of
RCPs in a spirit of Ramanujan’s approach, namely by taking cubic roots. In Section 4
we prove the form of a new representation of RCPs (Theorem 1.2 above). Moreover,
we show that this representation is actually given in terms of the Shevelev parameter
pq
r , and therefore we can refine a statement of Theorem 4 from [10]. Section 5 is

devoted to some asymptotic studies of RCP2s.

2. Differences and similarities for RCPs and RCP2s

In [11] it was proven that polynomials

x3 + 3
√
px2 +

√
5 − 1

6
3

√

p2x+
1 −

√
5

54
p,

where p ∈ R, p 6= 0, are the only RCP2s that possess a double root

x1 = x2 =
3
√
p

3

(
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√√
5 − 2

)

.

The third root is of the form
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3
√
p

3

(

−1 + 2
3

√√
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)

.

Also note that from (22) in [11] we get

1 +

(

x1
x3

)
1

3

+

(
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)
1

3

=





(√
5 − 1

2

)
1

3

−
(√
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2

)
1

3



 =

(

(

1

ϕ

)
1

3

− (ϕ)
1

3

)
1

3

,

where ϕ =
√
5+1
2 is the golden ratio.

However, there does not exist RCP with double root. Indeed, if we assume, contrary
to our claim, that RCP possesses a double root, then from the formulas for roots
presented in Theorem C (page 183) we get

1

2 − γ
= γ − 1 or

1

2 − γ
=

2 − γ

1 − γ
or γ − 1 =

2 − γ

1 − γ
.

Each equation simplifies to γ2 − 3γ + 3 = 0 whence γ cannot be a real number,
a contradiction.

Next, polynomials of the form

x3 − 3

2
r

1

3x2 − 3

2
r

2

3 x+ r = (x− 2 3
√
r)(x+ 3

√
r)

(

x− 1

2
3
√
r

)

(18)
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are the only RCPs roots of which form a geometric sequence. Verification is straight-
forward – it is enough to consider 6 cases using the form of roots given in Theorem C
on page 183 (3 of them are impossible and in the remaining 3 we get polynomials
(18)).

However, there does not exist RCP2 with this property. Indeed, if we assume,
contrary to our claim, that some RCP2 has roots of the form aq, aq2, aq3 then from
(16) and Viete’s formulas we get the following system











aq2(1q + 1 + q) = −3 3
√
kr

a2q4(1q + 1 + q) = −3 3

√

(k + 1)r2

a3q6 = −r

From the last equation we get aq2 = − 3
√
r and substituting that to the first and second

equations yields contradiction. That also means that the statement of Theorem 7(g)
in [11] is satisfied trivially.

So the above two properties of roots differ the two considered families of polyno-
mials. The following property shows their similarity.

Theorem 2.1. If π(x) = x3 +px2+qx+r is RCP (resp. RCP2) with roots x1, x2, x3,
then πinv(x) := x3 + q

rx
2 + p

rx+ 1
r is also RCP (resp. RCP2) with roots 1

x1

, 1
x2

, 1
x3

.

Proof. First observe that by assumption and Viete’s formulas we have the following
equalities p = −(x1 + x2 + x3), q = x1x2 + x1x3 + x2x3, r = −x1x2x3 whence

πinv(x) =

(

x− 1

x1

)(

x− 1

x2

)(

x− 1

x3

)

,

so πinv(x) has a desired form of roots. Next, by Definition 1.1 (page 183) for π(x) we

have pr
1

3 + 3r
2

3 + q = 0, whence for πinv(x) we get

q

r

1

r
1

3

+ 3
1

r
2

3

+
p

r
=

1

r
4

3

(

q + 3r
2

3 + pr
1

3

)

= 0,

which means that πinv(x) is also RCP.
Now, let π(x) be RCP2. Then by Definition 1.3 (page 187) we get

p3r + 27r2 + q3 = 0

and hence
(q

r

)3 1

r
+ 27

1

r2
+
(p

r

)3

=
1

r4
(

q3 + 27r2 + p3r
)

= 0,

which means that πinv(x) is also RCP2, as required. ⊓⊔

Remark 2.2. The part of the proof for RCPs also follows if we apply Property P.2
and then P.1 for a = 1

r .
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3. How RCP generates RCP2

In [11] it was examined what is a connection between RCPs and RCP2s and what
are the conditions on some parameters connected with a polynomial to be RCP or
RCP2 (conclusions were given in Theorem 7). In the previous section we generated
RCPs (resp. RCP2s) on a base of other RCPs (resp. RCP2s) in a spirit of Shevelev,
namely considering inverses of roots. Now we show how to generate RCP2 on a base
of some RCP in a spirit of Ramanujan, by considering cubic roots of roots.

Theorem 3.1. If a polynomial

π(x) = (x− x1)(x− x2)(x− x3) = x3 + px2 + qx+ r

is RCP then the polynomial

3
√
π(x) := (x− 3

√
x1) (x− 3

√
x2) (x− 3

√
x3)

is RCP2 if and only if
{

pr
1

3 + 3r
2

3 + q = 0
r = − pq

207

(19)

or, equivalently, if and only if there exists a ∈ R, a 6= 0 such that

p = 9a, q = 23

(

6

1 +
√

93

)3

a2, r = −
(

6

1 +
√

93

)3

a3,

or

p = 9a, q = 23

(

6

1 −
√

93

)3

a2, r = −
(

6

1 −
√

93

)3

a3.

(20)

Moreover, in this case we have

x1
a

= −3 − 6
√

6

23
(
√

93 ∓ 1) cos

(

1

3
arccot

√
31

)

,

x2
a

= −3 +
6
√

6

23
(
√

93 ∓ 1) sin

(

π

6
+

1

3
arccot

√
31

)

,

x3
a

= −3 +
6
√

6

23
(
√

93 ∓ 1) sin

(

π

6
− 1

3
arccot

√
31

)

,

(21)

with upper and lower signs taken respectively to those in (20) and therefore

3
√
π(x) = x3 +

3

√

9
(

9 ±
√

93
)

1 ±
√

93
ax2

+
6

1 ±
√

93
3

√

(

21 ∓ 2
√

93
)

a2x− 6

1 ±
√

93
a.

(22)

Proof. The first equation in (19) follows from the fact that π(x) is RCP. Next, using
Shevelev’s identities (see Property P.6, page 185) and Viete’s formulas we obtain
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3
√
π(x) = x3 − 3

√

−p− 6 3
√
r + 3 3

√

9r − pqx2+

+
3

√

q + 6
3
√
r2 − 3 3

√

9r2 − pqrx+ 3
√
r.

So by Definition 1.3 this polynomial is RCP2 if and only if

(

q + 6
3
√
r2 − 3 3

√

9r2 − pqr
)

+
(

p 3
√
r + 6

3
√
r2 − 3 3

√

9r2 − pqr
)

+ 27
3
√
r2 = 0,

whence

36
3
√
r2 − 6 3

√

9r2 − pqr = 0 ⇐⇒ 63r2 = 9r2 − pqr ⇐⇒ −pqr = (63 − 9)r2,

and finally, since r 6= 0, we get

r = − pq

207
,

which is the second equation in the system. To prove (20) we substitute the second
equation in (19) to the first one obtaining

−p 3

√

pq

207
+ 3

3

√

( pq

207

)2

+ q = 0,

and if we set p := 9a, q := 23c, then a 6= 0, c 6= 0 and we get

−9a 3
√
ac+ 3

3

√

(ac)
2

+ 23b = 0 ⇐⇒ −3
a

4

3

c
2

3

+
a

2

3

c
1

3

+
23

3
= 0,

which gives

a
2

3

c
1

3

=
1 ±

√
93

6
,

whence

q = 23c = 23

(

6

1 ±
√

93

)3

a2.

Substituting for p, q in the second equation in (19) we get r = −
(

6
1±

√
93

)3

a3 which

means that (20) holds.
Now, we take π(x) with p, q, r given in (20) under assumption a = 1. To obtain

a depressed polynomial we take z := x− 3 and hence it has the form

z3 − 2592

(
√

93 ± 1)2
z +

5184
√

93

(
√

93 ± 1)3
.

Now we shall use a refined version of Cardano’s formulas given in [14]. It was proven

that roots of the polynomial z3 +Az+B for which ∆ :=
(

B
2

)2
+
(

A
3

)3
< 0 and B > 0

(which is exactly our case) are of the following form
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−2

√

−A
3

cos





1

3
arctan

√

−
(

2

B

)2

∆



 ,

2

√

−A
3

sin





π

6
± 1

3
arctan

√

−
(

2

B

)2

∆



 .

(23)

Since arctan q = arccot 1
q for every positive real q, the above formulas yield roots of

π(x) for a = 1 which are exactly expressions on right sides in (21). Then the final
formulas follows from Property P.1.

Finally, (22) is obtained by straightforward calculations. ⊓⊔

From the above theorem some nontrivial identities can be derived. First of all, for

a = 1
9 (1 ±

√
93)b and M := 1

3
3
√
b 6

√

6
(

47 ∓ 3
√

93
)

, from (22) in [11] we get the new

rescaled 3
√
π(x) of the form

3
√
π(x)=x3 + 3

√

(

9±
√

93
)

bx2 − 3

√

2

3

(

9 ∓
√

93
)

b2x− 2

3
b =

=

(

x±M
(

√

1

14
(11±

√
93) + 2 cos

(

1

3
arctan

√
3(
√

93±9)

2

)))

×

×
(

x±M
(

√

1

14
(11±

√
93) − 2 sin

(

π

6
+

1

3
arctan

√
3(
√

93±9)

2

)))

×

×
(

x±M
(

√

1

14
(11±

√
93) − 2 sin

(

π

6
− 1

3
arctan

√
3(
√

93±9)

2

)))

=

=

(

x±
(

1

3
3

√

(
√

93±9)b+ 2M cos

(

1

3
arctan

√
3(
√

93±9)

2

)))

×

×
(

x±
(

1

3

3

√

(
√

93±9)b− 2M sin

(

π

6
+

1

3
arctan

√
3(
√

93±9)

2

)))

×

×
(

x±
(

1

3

3

√

(
√

93±9)b− 2M sin

(

π

6
− 1

3
arctan

√
3(
√

93±9)

2

)))

,

(24)

where all roots taken are the real ones. Moreover, we obtain

M

√

1

14
(11 ±

√
93) =

1

3
3

√

(
√

93 ± 9)b,

which implies equalities

6

√

1

4
(47 ∓ 3

√
93)

√

1

7
(11 ±

√
93) =

3

√√
31 ± 3

√
3.
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Next, while looking for roots of the polynomial 3
√
π(x), inspired by suggestions given

by Mathematica, we deduced the following equalities

3

√

6(47 ± 3
√

93) =
3

√

(
√

93 ∓ 9)2 ± 3

√

18(
√

93 ± 9).

Furthermore, we obtained two Ramanujan type identities for RCP2s, involving 9-th
roots of RCPs (with signs taken respectively to those in formulas (20))

(√
93 ± 1

2 · 34

)
1

9
(

x
1

9

1 + x
1

9

2 + x
1

9

3

)

=

=



±2 −
(√

93 ± 9

2 · 32

)
1

3

∓
(

34

2

)
1

9

(

(

3

√√
93 + 9 − 3

√√
93 − 9

)
1

3

+

+

(

3

√√
93 + 9 − 3

√√
93 − 9 − 3

√

24

3

)
1

3









1

3

,

(25)

and finally we get an analogue of Shevelev identity for RCP2s, involving 9-th roots of
RCPs (which is the same in both cases), namely

(

2

34

)
1

9

(

(

x1
x2

)
1

9

+

(

x2
x1

)
1

9

+

(

x1
x3

)
1

9

+

(

x3
x1

)
1

9

+

(

x2
x3

)
1

9

+

(

x3
x2

)
1

9

)

=

=

(

3

√√
93 − 9 − 3

√√
93 + 9 +

3

√

24

3

)
1

3

−
(

3

√√
93 + 9 − 3

√√
93 − 9

)
1

3

. (26)

Additionally, for the upper signs in (25) we deduce the following relation

−
(

x
1

9

1 + x
1

9

2 + x
1

9

3

)(

21 + 2
√

93
)

1

9

=

=

(

1 +

√

2(11 +
√

93) cos

(

1

3
arctan

√
3

2
(
√

93 − 9)

))
1

3

+

+

(

1 −
√

2(11 +
√

93) sin

(

π

6
− 1

3
arctan

√
3

2
(
√

93 − 9)

))
1

3

+

+

(

1 −
√

2(11 +
√

93) sin

(

π

6
+

1

3
arctan

√
3

2
(
√

93 − 9)

))
1

3

.

(27)
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4. Representations of RCPs

Proof of Theorem 1.2. Assume first that π(x) = x3 + px2 + qx+ r is RCP such
that the Shevelev parameter s = pq

r 6= 0.

Since pr
1

3 + 3r
2

3 + q = 0, we get

p
(pq)

1

3

s
1

3

+ 3
(pq)

2

3

s
2

3

+ q = 0,

from which, multiplying by s
2

3 /q
1

3 , we obtain

s

(

p2

s

)
2

3

+ 3

(

p2

s

)
1

3

(sq)
1

3 + (sq)
2

3 = 0.

Now, under substitutions z := (sq)
1

3 , y :=
(

p2

s

)
1

3

, we get

z2 + 3zy + sy2 = 0 ⇐⇒ z =
−3 ±

√
9 − 4s

2
y.

Next, s 6 9
4 by Property P.8, which gives the desired bound for this parameter. Hence

9 − 4s > 0, so from above we obtain

(s2q)
1

3 =

(

p2

r2

)
1

3

q =
−3 ±

√
9 − 4s

2
(p2)

1

3 ,

whence

q =
−3 ±

√
9 − 4s

2
r

2

3 , p =
sr

q
=

−3 ∓
√

9 − 4s

2
r

1

3 .

and therefore we get the formula (7), that is

π(x) = x3 +
−3 ∓

√
9 − 4s

2
r

1

3x2 +
−3 ±

√
9 − 4s

2
r

2

3 x+ r

as required.

For s = 0 the calculations are straightforward, on a base of Theorem C (page 183).
Namely, s = 0 if and only if either P (2−γ) = 0 or P (γ−1) = 0. The first equality takes

place for γ = 2 cos 2kπ
9 − 2, k = 1, 2, 3. For all three values we obtain P (γ−1)

(γ−1)(2−γ) = −3

whence π(x) = x3−3r
1

3x2+r which suits the above formula for upper signs. Similarly,
from the second equality we get (7) for lower signs. Thus (7) is valid for every s 6 9

4 .
Finally, from Cardano-type formulas (23) applied to (7) we obtain roots of π(x)

defined in (8), which finishes the proof. ✷
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As an immediate consequence we get the following

Theorem 4.1. 1. A cubic polynomial π(x) = x3 + px2 + qx+ r, p, q, r ∈ R, r 6= 0 is
RCP if and only if it is of the form

π1/2(x; r) := x3 +
−3 ±

√
9 − 4s

2
r

1

3x2 +
−3 ∓

√
9 − 4s

2
r

2

3x+ r, s =
pq

r
.

2. For each real number a < 9
4 there are exactly 2 distinct families of RCPs of the

form π1(x; r) and π2(x; r) (depending on r only) with the Shevelev parameter equal
to a and only one family for the limit value 9

4 .
3. We have π1(x; 1) = π2

(

1
x ; 1
)

, whence roots x1, x2, x3 of π1(x; 1) are reciprocals of

roots of π2(x; 1). Hence the roots of π1(x; r) are r
1

3 x1, r
1

3 x2, r
1

3x3 whereas roots

of π2(x; r) are r
1

3

x1
, r

1

3

x2
, r

1

3

x3
. In particular, that implies Shevelev’s property P.9. ✷

Remark 4.2. Point 2. in the above theorem refines the statement of Theorem 4
from [10] by which there were at most 6 such families for each a.

Remark 4.3. By Property P.10 (page 185) we have s = P (γ−1)P (2−γ)
((γ−1)(2−γ))2 , which for

r = 1 is equivalent to the system

{

Ps(x) := x3 + (s− 6)x2 + 3x+ 1 = 0
x = (γ − 1)(γ − 2)

(28)

That gives some corollaries in view of the above results.

E.g. for r = 1, s = 0 by Theorems 1.2 and 4.1 and Remark 1 we have

π1(x; 1) = P (x) = x3 − 3x+ 1 =

3
∏

k=1

(

x− 2 cos
2kπ

9

)

and

π2(x; 1) = x3 − 3x2 + 1 =

3
∏

k=1

(

x− 1

2 cos 2kπ
9

)

.

Furthermore, for α = 2kπ
9 , k ∈ N, 3 ∤ k we obtain

P (1 − 2 cosα) = −1 + 4 cos2 α(3 − 2 cosα) = −1 + (2 + 2 cos 2α)(3 − 2 cosα) =

= 6(1 + cos 2α− cosα) = 6

(

1 − 2 sin
3

2
α sin

α

2

)

=

= 6

(

1 − (−1)⌊
k

3
⌋√3 sin

kπ

9

)

.

and in the sequel we get

P

(

1 − 2 cos
2k+1π

9

)

= 6

(

1 + (−1)k
√

3 sin
2kπ

9

)

, k ∈ N,
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whence, because of the form of roots of RCPs, we deduce

P0(x) = x3 − 6x2 + 3x+ 1 =

3
∏

k=1

(

x− 2 − (−1)k2
√

3 sin
2kπ

9

)

=

=

(

x− 2 + 2
√

3 sin
2π

9

)

(

x− 2 − 2
√

3 cos
π

18

)(

x− 2 + 2
√

3 sin
π

9

)

,

P0(x+ 2) = x3 − 9x+ 9 =

3
∏

k=1

(

x+ 2
√

3(−1)k+1 sin
2kπ

9

)

=

=

(

x+ 2
√

3 sin
2π

9

)

(

x− 2
√

3 cos
π

18

)(

x+ 2
√

3 sin
π

9

)

.

Next, for r = 1, s = 1 we have

π1(x; 1) = x3 − 1

ϕ2
x2 − ϕ2x+ 1 = (x− ϕ)(x + ϕ)

(

x− 1

ϕ2

)

,

and

π2(x; 1) := x3 − ϕ2x2 − 1

ϕ2
x+ 1 =

(

x− 1

ϕ

)(

x+
1

ϕ

)

(x − ϕ2).

where ϕ is the golden ratio. We emphasize that these are the only known RCPs for
which Shevelev’s identities (see Property P.6, page 185) are trivial.

Moreover, from Cardano-type formulas in [14] we can obtain the following trigono-
metric form of the roots of P1(x) = x3 + 5x2 + 3x+ 1:

5

3
+

8

3
cos

(

1

3
arctan

3
√

15

11

)

= 2 +
√

5,

5

3
− 8

3
sin

(

π

6
± 1

3
arctan

3
√

15

11

)

=

{

2 −
√

5,
1

which implies the relations

cos

(

1

3
arctan

3
√

15

11

)

− sin

(

π

6
+

1

3
arctan

3
√

15

11

)

=
1

4
,

sin

(

π

6
− 1

3
arctan

3
√

15

11

)

=
1

4
,

cos

(

1

3
arctan

3
√

15

11

)

=
1

8
+

3
√

5

8
=
ϕ4 − 3

4
=

3ϕ− 1

4
,

sin

(

1

3
arctan

3
√

15

11

)

=

√
15 −

√
3

8
=

√
3

4ϕ
,

where ϕ is the golden ratio.
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Remark 4.4. From Theorem 4.1 we also get the following formulas

(

3 +
√

9 − 4s+ 4
√

9 − s cos

(

1

3
arctan

√

27

9 − 4s

))

×

×
(

3 −
√

9 − 4s+ 4
√

9 − s sin

(

π

6
− 1

3
arctan

√

27

9 − 4s

))

= 36,

(

3 +
√

9 − 4s− 4
√

9 − s sin

(

π

6
− 1

3
arctan

√

27

9 − 4s

))

×

×
(

3 −
√

9 − 4s+ 4
√

9 − s sin

(

π

6
+

1

3
arctan

√

27

9 − 4s

))

= 36,

(

3 +
√

9 − 4s− 4
√

9 − s sin

(

π

6
+

1

3
arctan

√

27

9 − 4s

))

×

×
(

3 −
√

9 − 4s− 4
√

9 − s cos

(

1

3
arctan

√

27

9 − 4s

))

= 36.

5. Asymptotic properties for RCP2

For any RCP2, which is given by p(x) = x3 + 3 3
√
krx2 − 3 3

√

(k + 1)r2x + r (see
formula (16)), with roots ξ1, ξ2, ξ3 the following identities hold [11]

3

√

ξ1
ξ2

+ 3

√

ξ2
ξ1

+ 3

√

ξ2
ξ3

+ 3

√

ξ3
ξ2

+ 3

√

ξ1
ξ3

+ 3

√

ξ3
ξ1

=

= 3

√

9
(

3
√
k − 3

√
k + 1

)

+ 3

√

9
(

3
√
k + 1

)(

1 − 3
√
k + 1

)

,

(29)

3

√

ξ1
r

+
3

√

ξ2
r

+
3

√

ξ3
r

=

= 3

√

√

√

√−3

(

2 +
3
√
k + 3

√

9
(

3
√
k − 3

√
k + 1

)

+ 3

√

9
(

3
√
k + 1

)(

1 − 3
√
k + 1

)

)

,

(30)
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3

√

ξ1ξ2
r2

+
3

√

ξ1ξ3
r2

+
3

√

ξ2ξ3
r2

=

k 6=1
=

(

3
√
ξ1 + 3

√
ξ2 + 3

√
ξ3
)3 − ξ1 − ξ2 − ξ3 + 3 3

√
ξ1ξ2ξ3

3
3
√
r2
(

3
√
ξ1 + 3

√
ξ2 + 3

√
ξ3
) =

k 6=1
=

3
√

9 + 3

√

3
(

3
√
k − 3

√
k + 1

)

+ 3

√

3
(

3
√
k + 1

)

(

1 − 3
√
k + 1

)

3

√

2 + 3
√
k + 3

√

9
(

3
√
k − 3

√
k + 1

)

+ 3

√

9
(

3
√
k + 1

)

(

1 − 3
√
k + 1

)

,

(31)

where in all cases real roots of third order are considered. Hence the limit follows

lim
k→1

3
√

9 + 3

√

3
(

3
√
k − 3

√
k + 1

)

+ 3

√

3
(

3
√
k + 1

)

(

1 − 3
√
k + 1

)

3

√

2 + 3
√
k + 3

√

9
(

3
√
k − 3

√
k + 1

)

+ 3

√

9
(

3
√
k + 1

)

(

1 − 3
√
k + 1

)

=

= − 3

√

3
(

3
√

2 + 1
)

since for roots x1, x2, x3 of the polynomial

p(x) = x3 + 3x2 − 3
3
√

2x+ 1

we get (see [11])

3
√
x1x2 + 3

√
x1x3 + 3

√
x2x3 = − 3

√

3
(

3
√

2 + 1
)

.

We also note that
3
√

3 =
(

3
√

2 + 1
)

3

√

3
√

2 − 1,

whence

3

√

x1
x2

+ 3

√

x2
x1

+ 3

√

x1
x3

+ 3

√

x3
x1

+ 3

√

x2
x3

+ 3

√

x3
x2

= −3.

Moreover from (31) for k = 0 and from formula (4) in [10] we get

3
√

9 − 3
√

3
3

√

2 − 3
√

9
= 3

√

3
(

1 − 3
√

9
)

,

i.e.
3
√

3 − 1 = 3

√

(

3
√

9 − 1
)(

3
√

9 − 2
)

,

since the polynomial q(x) = x3 − 3x+ 1 is RCP.



A few properties of Ramanujan cubic polynomials. . . 199

Now, from (30) and (31) the following asymptotic expression can be deduced

3

√

ξ1
r

+
3

√

ξ2
r

+
3

√

ξ3
r

= 3

√

√

√

√−3
3
√
k

(

1 −
3
√

9
9
√
k

+
2
3
√
k

+ o

(

1
3
√
k

)

)

, (32)

so we get
(

3
√
ξ1 + 3

√
ξ2 + 3

√
ξ3
)3

ξ1 + ξ2 + ξ3
= 1 −

3
√

9
9
√
k

+
2
3
√
k

+ o

(

1
3
√
k

)

.

We note that if x1, x2, x3 are roots of a complex polynomial x3 + px2 + qx + r and
r 6= 0 then

x1
x2

+
x2
x1

+
x1
x3

+
x3
x1

+
x2
x3

+
x3
x2

= −3 − 5pq

r
.

Hence for RCP2 given by formula (16), that is x3 + 3 3
√
krx2 − 3 3

√

(k + 1)r2x+ r, we
obtain

ξ1
ξ2

+
ξ2
ξ1

+
ξ1
ξ3

+
ξ3
ξ1

+
ξ2
ξ3

+
ξ3
ξ2

= −3 − 5
3 3
√
kr
(

−3 3

√

(k + 1)r2
)

r
=

= −3 + 45 3

√

k(k + 1) = −3 + 45
3
√
k2
(

1 +
1

3k

)

+ o

(

1
3
√
k

)

,

which by (32) implies

(

3
√
ξ1 + 3

√
ξ2 + 3

√
ξ3
)3

ξ1
ξ2

+ ξ2
ξ1

+ ξ1
ξ3

+ ξ3
ξ1

+ ξ2
ξ3

+ ξ3
ξ2

= −1

5
− 3

5 3
√

3
9
√
k4

+ o

(

1
9
√
k4

)

.
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